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Surface effects on the relaxation dynamics of hexatic-B liquid-crystal films
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Based in a linearized hydrodynamic model, we study the relaxation dynamics of hexatic-B liquid-crystal
films in two distinct cases. First, we investigate the hexatic order relaxing through a purely diffusive process
for which the particles velocity field is assumed to be negligible. In this case, the asymptotic relaxation of
deformations in the hexatic order presents a pronounced dependence on the boundary conditions. We found
that a surface tilted order is enough to drive the slowest relaxation mode from an acoustic to an optic character.
Second, we study the viscous case which is characterized by the coupling between the particles velocity field
and the bond orientational order. In this case, underdamped modes with oscillatory-exponential relaxation are
obtained on a narrow range of wave vectors. Further, the viscous relaxation of surface and inner layers
deformations display distinct scaling behaviors under a surface tilted order.
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I. INTRODUCTION

Free-standing liquid-crystal films have been extensively
studied as an ideal setup to investigate the crossover from
three-dimensional (3D) to two-dimensional (2D) behavior.
Birgeneau and Litster proposed that some liquid crystalline
phases with a short-range positional order would present
long-range bond orientational order originally predicted by
theories of dislocation-mediated melting in two-dimensional
solids [1-3]. Several experimental studies have demonstrated
the existence of the so-called hexatic-B liquid-crystal phase
in a great variety of compounds, being the unique system
where hexatic order has been observed at high temperatures
[4-6]. In this context, the hexatic-B phase is described as a
set of stacked hexatic layers with short-range in-plane posi-
tional order, but with long-range bond orientational order.

The great variety of phenomena associated with the inter-
play between surface effects and bulk ordering has increased
the interest in the study of static and dynamical properties of
free-standing liquid-crystal films. In smectic-A films, the sur-
face tension reduces the fluctuations in the smectic order
close to the surface, providing a quasi-long-range order char-
acterized by the logarithmic divergence of fluctuations in the
limit of large film thicknesses. As a result, surface ordering
plays an important role in phenomena such wetting transition
[7,8], layer-by-layer thinning [9,10], and the existence of
smectic films at high temperatures [11,12]. Also, several
works have demonstrated that the dynamical properties of
free-standing smectic-A films are strongly dependent on the
boundary conditions [13-19]. In particular, experiments us-
ing coherent soft-x-ray [13,17] and hard-x-ray [16,18] dy-
namic scattering have shown that the relaxation time stays
finite for small wave vectors of the in-plane fluctuations, due
to the surface contribution to the free energy. As a conse-
quence, the algebraic decay of the dynamic density-density
correlation function is expected to be governed by a time-
dependent exponent in an overdamped regime [13]. On the
other hand, recent studies using x-ray photon correlation
spectroscopy and neutron spin echo methods have observed
distinct relaxation regimes which depend on the wavelength
of in-plane fluctuations for films in an underdamped regime
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[18]. In this case, the intensity-intensity correlation function
presents a combination of damped and oscillatory behaviors
which results from inertial terms [16,18]. Also, one nanosec-
ond correlation spectroscopy probed under- and overdamped
ondulational modes [19].

Contrasting with smectic-A films, fluctuations in the
hexatic order present a logarithmic divergence without a pre-
dominant surface term. However, surface ordering has been
demonstrated to be responsible for certain unusual phenom-
ena close to the hexatic-B—smectic-A phase transition, such
as specific heat anomalies [20-22] and a nonmonotonic
thickness dependence of the transition temperature [23]. For
temperatures at which the hexatic order is well stabilized, the
mean angle fluctuation was shown to obey a universal scal-
ing behavior with the relevance of surface ordering being
determined by a characteristic length scale [24]. With con-
cern to the dynamical properties, the existence of a local
hexatic order in smectic-A films was observed to induce a
sound propagation anisotropy in the vicinity of smectic-
A-hexatic-B transition [25,26]. The anisotropy is related to
the coupling between the local hexatic order and the smectic
layer spacing gradient [26,27]. Moreover, the temperature
dependence of transport coefficients in two-dimensional
hexatic films has been predicted close to the melting transi-
tion by including dynamical effects of disclinations and dis-
locations [28]. Furthermore, the bond orientational field and
hydrodynamic velocity distributions were theoretically deter-
mined around a moving dislocation which allowed to relate
the disclination velocity field to the bond orientational order
variations far from disclinations [29]. Light-scattering stud-
ies of bond orientational order in tilted hexatic liquid-crystal
thick films have shown two main relaxation modes [30-32].
An acoustic mode, whose relaxation time diverges in the
limit of very small wave vectors, corresponds to fluctuations
in the orientation of the in-plane director component. An
optic mode was also found associated with the bond orienta-
tional fluctuations. Such mode is characterized by a finite
relaxation time in the limit of small wave vectors. The emer-
gence of an optic mode was directly related to the coupling
between the bond orientation and the tilt angle. This coupling
is commonly represented in the elastic free energy as a con-
jugate field on the bond orientational order.
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In the present work, we examine the effects of surface
ordering operators on the relaxation dynamic of hexatic-B
liquid-crystal films within a linearized hydrodynamic model.
We consider two distinct cases. First, we assume that the
velocity field is negligible with the bond orientational field
relaxing through a purely diffusive process. In a second mo-
ment, we consider a non-null velocity field taking into ac-
count rotational and shear viscosities. In both cases, we com-
pute the relaxation times and their dependence on the
boundary conditions is analyzed. Also, we study the tempo-
ral evolution of a surface Gaussian deformation as well as its
transmission to the inner layers. In the diffusive case, we
observe that a surface tilted orientational order promotes an
exponential asymptotic relaxation of orientational deforma-
tions. In the viscous case, we observe that the surface layer
presents the same slow relaxation for different surface cou-
plings. However, the asymptotic temporal relaxation of the
orientational distortions in inner layers depends on the sur-
face ordering field.

II. MODEL

The long-range bond orientational order in hexatic layers
is characterized by a local order parameter s(r)= iye® ™),
where 6(r) is the angle between bonds and some reference
axis [2]. Here, we will consider a film with N layers well
within the hexatic phase. In this regime, amplitude fluctua-
tions and topological defects may be disregarded. The in-
plane deformations on the hexatic order are then governed by
harmonic orientational fluctuations that can be represented
by the hydrodynamic Hamiltonian

L
H:f d*r

ao

N N-1
[df "2 Vo + élE (611 (0) = 60T |

(1)

where L is the transversal length of film, a is the in-plane
molecular distance which is taken as a lower cutoff and d is
the layer spacing. K, is the effective Frank constant associ-
ated to the energy cost for distortions in the bond orienta-
tional order in the layer plane. J is the interlayer coupling
constant associated with relative distortions between adja-
cent layers. Due to the suppression of smectic fluctuations on
the boundary layers by the surface tension, the elastic con-
stants related to hexatic order distortions are stronger at the
surface than at bulk layers [33-35]. This surface ordering in
hexatic films is represented by an enhancement of operators
that act just on the surface layers, such as
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The film inhomogeneity can be distinct in each surface
depending on interactions at interfaces gas/film and/or
substrate/film. In the following, we will just consider sym-
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metric boundary conditions with AK!=AKY=AK, and AJ!
=AJ§V =AJ,. Also, we may include a surface field conjugate
to the bond orientational order due to the possible existence
of a tilted order at the surfaces [24]

h L
AH,= Ef d2r[6’f(r) + lev(r)] (3)

ag
The total Hamiltonian is given by Hy=H+AHg+AH,. In
order to study dynamical properties, we considered the lin-

earized motion equations for deformations in the hexatic or-
der of the ith layer [28]

n; K;

— = —L (X V)V, + pV0,, 4

P 2p0(z )V26,+ nV-u, (4)
(?01‘ 14 N 15H7‘
— = — VX i), — N 5
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where p is the average mass density of the system and 7 and
v are the shear bulk viscosity and angular viscosity, respec-
tively [36]. The velocity field v; denotes the motion of par-
ticles into the ith layer. The first term in the right side of Eq.
(5) represents the bond orientational order response to the
existence of local vortices in the velocity field. It has a simi-
lar term in Eq. (4) which represents the response of the ve-
locity field to inhomogeneities in the bond orientational or-
der. In the smectic-A phase, it is well known that four of five
viscosities diverge in the limit of low frequency resulting
from the nonlinear coupling between velocity field and ther-
mally excited ondulational modes [37]. A similar result was
derived for the angular viscosity in 2D hexatic liquid crystals
from renormalization group theory [38]. In this case, the an-
gular viscosity is expected to have a logarithmic divergence
for long wavelengths. However, the range of wavelengths
and frequencies where dynamical properties are dominated
by the singular contribution seems not to be experimentally
accessible [38]. Therefore, we will assume v to be constant
without affecting our main results in most of the experimen-
tal range of wave vectors and frequencies.

II1. DIFFUSIVE RELAXATION

In this section, we will assume that the velocity field is
negligible. In this regime, the motion equations results in a
set of N coupled equations for the bond orientational distor-
tion displacement. Using the Fourier decomposition of the
orientational deformation written in the form

21lag 2

. ﬁa»(g)eim, (6)

0:(r) =
and introducing the following dimensionless variables
(J/vd)t—t and (dVK,/J)g— Q, the hydrodynamic equa-
tions for each Fourier component can be written in a com-
pact form given by
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FIG. 1. Dimensionless relaxation time as a function of the wave
vector for distinct boundary conditions. (a) Homogeneous film: a
single mode exhibits a diverging relaxation time in the limit of
small wave vectors. (b) K,;/K,=2: in the limit of large wave vectors
the surface modes display a shorter relaxation time. (¢) dh/J=1: the
surface ordering field keeps all relaxation times finite even in the
small wave-vectors regime.

96(Q,1)

PP M(Q)0(Q.1). ()

Here 6(Q,7) is a N X 1 matrix with components 6,(Q,7) and
M(Q) is the interaction matrix defined by

M11:MNN=£Q2+J&+—dh, (®)

* N7 K, J
M;=Q*+(Us+J)J, i=2,N-1, 9)
M;=0*+2, i=3,....,N-2, (10)
My =My =—1, i=2,N-3, (11)
My, =My =Myn1=My\ny=-JdJ, (12)

where K,=K,+AK, and J,=J+AJ, are the surface elastic
constants. Computing the eigenvalues N"(Q) and associated
eigenvectors ¢"(Q) of the interaction matrix, it is straight-
forward to show that the formal solution of Eq. (7) is given
by
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0"(q)

(b) layer index

FIG. 2. (a) Symmetric and (b) antisymmetric normal modes of a
six-layers film with K;=2K, in the regime of large wave vectors.
Notice that only two modes (one symmetric and one antisymmetric)
have significant amplitudes located at the surface layers. Therefore,
these modes present a faster relaxation as depicted in Fig. 1(b) due
to their enhanced rigidity.

N
60,1 = 2, 00,0 ™). (13)

m=1

The time evolution of each component on the above nor-
mal modes decomposition depicts a purely exponential relax-
ation on the form

t
sal 0

The relaxation time 7"(Q) associated to the mth normal
component is just the inverse of the mode eigenvalue
[7(Q)=1/\"(Q)]. In Fig. 1, we report the computed relax-
ation times as a function of the in-plane wave vector ¢ for a
film with six layers under distinct boundary conditions. For a
homogeneous film, we observe that the longest relaxation
time diverges with 7ocg~> while the other ones stay finite as
shown Fig. 1(a). The divergence of the relaxation time of the
slowest mode for ¢ — 0 is typical of the acoustic mode ob-
served in light-scattering experiments [30-32]. All relaxation
times decay as 1/¢* for long wave vectors.

In Fig. 1(b), we consider a film with more rigid surfaces
represented by K,=2K,,. In the regime of small wave vectors,
all relaxation times present a wave-vector dependence simi-
lar to that observed for a homogeneous film. In the large
wave-vectors regime, two modes present a faster relaxation
dynamic. In order to better understand this feature, we plot-
ted the eigenmodes in this case and observed that these two
faster modes are mainly restricted to the surface layers while
the other modes have a very small surface component (see
Fig. 2). The shorter relaxation time of the surface modes is
due to the strong rigidity of the surfaces. In spite of this, all

6"(Q.1) = W(Q,O)ﬁp[—
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FIG. 3. Normalized deformation amplitude in the surface layer
as a function of ¢ for different boundary conditions. For a homoge-
neous film with K,=K, (solid line) as well for a film with rigid
surfaces with K,=2K, (dashed line), we can notice that the
asymptotic deformation amplitude presents a power-law decay as
6,(0,1) ¢!, In the inset, we can observe that the deformation am-
plitude has an exponential decay for films with a surface tilted bond
orientational order.

relaxation times still decay with ¢~2. For the case of a stron-
ger surface coupling (J,>J) (not shown) there is no signifi-
cantly change in the relaxation times.

In Fig. 1(c) we consider the presence of a surface tilted
order represented by the conjugate field 4. In this case, we
obtain that all relaxation times stay finite as ¢— 0. Hence, a
tilted surface order induces a faster relaxation of the bond
orientational distortion in this regime. The slowest relaxation
mode has an optic character with a wave-vector independent
relaxation time in the small wave-vector regime. Such optic
mode has indeed been observed experimentally in smectic-C
and smectic-I films [30-32]. However, the experimental sys-
tems investigated have bulk tilt alignment while here we
consider only surface tilt. Therefore, the present result indi-
cates that a surface tilt is enough to promote the emergence
of the optic mode. For large ¢ the conjugate field becomes
irrelevant and one obtains the same behavior as that observed
for nontilted surfaces.

From the above results, we study the relaxation dynamics
of a surface deformation in the bond orientational order. We
consider an initial distortion located at one of the film sur-
faces while the other layers are kept undistorted. Such initial
deformation can be represented as

GI(R,t= 0)
A(R,t=0) = ? . (15)

0

We will take the initial distortion of the surface layer as
Gaussian

0,(R,1=0) = fpe~R'F0’ (16)

where R=(r/d)(K,/J)~"? is a dimensionless distance from a
reference point with maximum distortion. As a representative
case, we will assume in the following R,=(10ay/d)
X (K,/J)~"2. In Fig. 3 we plot 6,(r=0,¢) as a function of ¢
for different boundary conditions. For a uniform film, we
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FIG. 4. Normalized deformation amplitude in the second layer
as a function of 7 for different values of J,/J. We can observe that
the deformation amplitude increases and the typical time response
decreases as J,/J becomes larger.

observe that 6,(0,7) decays asymptotically as ¢! resulting
from the divergence of the longest relaxation time as g—0.
A similar temporal dependence is observed for films with
rigid surfaces but 6,(0,7) presents slightly lower values than
in the uniform case. On the other hand, for films with a
surface tilted orientational order we observe that the defor-
mation amplitude decays exponentially with # due to the fact
that all relaxation times stay finite for ¢—0. An enhance-
ment in the surface couplings does not induce any significant
modification in the temporal dependence of 6,(0,r). How-
ever, the surface coupling is expected to play an important
role in the transmission of surface deformations to inner lay-
ers. In Fig. 4 we plot 6,(r=0,7) as a function of ¢ for differ-
ent ratios of J;/J. We notice that the maximum deformation
on the second layer increases as J;/J becomes large while
the response time decreases.

IV. VISCOUS RELAXATION

In this section, we assume that the velocity field is non-
null. In this case, we have a system of 2N coupled motion
equations given by Eq. (4) and Eq. (5) which govern the
temporal evolution of the velocity and bond orientational
fields in each layer. Differentiating Eq. (5) with respect to ¢
and making some mathematical manipulations, the set of
coupled equations can be written in a compact form as

7
ar?

(95 214 _
=— |:(M+C1C2Q21)E + <C1C2Q2M+ %I) 6:| .

(17)

In the above equation, / is the identity matrix and M is the
interaction matrix defined by Egs. (8)—(12). t and Q are the
same normalized quantities introduced in the diffusive case
while ¢,;=7?/K,p and c,=v/7 are usual dimensionless ex-
perimental parameters. For typical liquid crystal compounds
both ¢, and c, are greater than a unit [29,36]. As in the
diffusive case, the formal solution of Eq. (17) can be ex-
pressed in terms of the eigenvectors of the interaction matrix.
In this case, the coefficients of the expansion in Eq. (13) are
given by
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FIG. 5. Dimensionless short relaxation times as a function of the
wave vector for distinct boundary conditions. (a) Homogeneous
film, (b) dh/J=1. In both cases, we can note that 7_ presents a
behavior similar to that reported for the diffusive case. The inter-
mediate range of wave vectors bounded by singularities delimits the
oscillatory exponential decay regime for each mode.

0"(0,1) = A, (Q)e™ " + B, (Q)e™ ", (18)

where A,,(Q) and B,,(Q) are determined by the decomposi-
tion of the initial distortion. The inverse of the relaxation
times are given by

()\m + CIC2Q2 -+ \”A_m) > (1 9)

ol =

1
2
with

Am = ()\m + C1C2Q2)2 - (4CICZQ2)\m + CIC§Q4) . (20)

From Eq. (19), we can identify two distinct relaxation
processes for the bond orientational modes in the viscous
case. For A, >0, the mth mode relaxes through a purely
exponential process with the relaxation times being defined
as 77=1/¢a/!. On the other hand, A,, <0 implies that the as-
sociated mode relaxes through an oscillatory exponential
process. In this case, the relaxation time is given by 7"
=2/(\,,+¢;c,0%) while the oscillation frequency is ex-
pressed as w,,=\A,,/2. In Figs. 5 and 6 we plot the relax-
ation times for a six layers film in the hexatic-B phase under
different boundary conditions. We took ¢;=10 and ¢,=2 as
represented values of the relevant viscosity effects. In Fig. 5
we observe that the shorter relaxation time 7_ presents a
wave-vector dependence similar to that observed in the dif-
fusive case for both boundary conditions. However, an inter-
mediate range of wave vectors emerge for which an
oscillatory-exponential relaxation takes place. In contrast to
the diffusive case, we notice that the longer relaxation time
7, of all modes diverge with g™ as ¢—0 even for films
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FIG. 6. Dimensionless long relaxation time as a function of the
wave vectors for a six layer film under distinct boundary conditions:
(a) Homogeneous film and (b) dh/J=1. Here we can observe the
divergence of 7, in the limit Q—0 for all modes even under a
surface ordering field.

under a surface ordering field as shown in Fig. 6. In this case,
the bond orientational distortions are expected to present a
slow relaxation dynamic even in films with a surface tilted
order.

In Fig. 7 we plot the oscillation frequency of each mode
as a function of the wave vector. For homogeneous films, the
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FIG. 7. Dimensionless oscillation frequencies versus wave vec-
tors for a six layer film on the same boundary conditions of Fig. 5.
(a) Homogeneous film for which a single mode relaxes exponen-
tially. (b) dh/J=1 for which all modes present an oscillatory-
exponential relaxation.

051705-5



I. N. DE OLIVEIRA AND M. L. LYRA

10 R IR
-]
10 — dh/J =0
& 102 —— dnJ=1
=10
10"
s [ [T
10 21 Lo 01 Ll 21 LUK .
10 10 10 10

t (units of dv/T)

FIG. 8. Normalized deformation amplitude in the first layer as a
function of ¢ for films under distinct boundary conditions. The
asymptotic deformation amplitude presents a power-law decay as
6,(0,1) ¢! even under a surface ordering field.

relaxation modes oscillate in distinct ranges of wave vectors
as shown in Fig. 7(a) while the slowest relaxation mode de-
picts a purely exponential relaxation dynamics. In Fig. 7(b),
we observe that all modes relax through an oscillatory-
exponential process for film with a surface tilted order. Also,
we obtain a more pronounced wave-vector overlap among
the oscillating modes.

Due to the divergence of the relaxation times as g — 0,
bond orientational order shall present a power-law relaxation
dynamics even in the presence of surface tilted order. In Fig.
8 we compute the amplitude of a surface deformation as a
function of time. We observe that 6,(0,7) presents the same
asymptotic decay for homogeneous and surface tilted films.
This result is supported by the divergence of the longer re-
laxation times in the limit of short wave vectors irrespective
to the boundary conditions imposed to the surface layers.
The asymptotic scaling 6,(0,7) ¢! is the same one observed
in the diffusive case.

Although a surface tilted order does not modify the relax-
ation dynamics of the surface layer, inner layers present a
faster decay in the presence of this surface ordering field. In
Fig. 9, we plot 6,(r=0,7) as a function of ¢ under distinct
boundary conditions. For films with a surface tilted order, we
found that asymptotically 6,(r=0,¢) 2. The sensitivity on
the boundary conditions of the asymptotic time evolution of
hexatic distortions in the inner layers results from the distinct
wave-vector dependence of the eigenmodes spectral decom-
position coefficients. A closely related sensitivity to initial
conditions was previously observed to occur in one-
dimensional harmonic and diluted Anderson chains [39,40].

V. SUMMARY AND CONCLUSIONS

In conclusion, we studied the relaxation dynamics of
hexatic-B liquid crystal films using a linearized hydrody-
namical model. Two distinct cases were investigated for
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FIG. 9. Normalized deformation amplitude in the second layer
as a function of ¢ for films under distinct surface ordering. We can
observe that the asymptotic behavior 6,(r)r' in homogeneous
films (solid line) is replaced by 6,(¢)<¢™? in films with a surface
tilted order (dashed line).

films under different boundary conditions. In the diffusive
case, we observed that surface effects modify the behavior of
the longest relaxation time in the regime of small wave vec-
tors. In particular, a surface tilted order induces the longest
relaxation time to stay finite in the limit of small wave vec-
tors. As a result, surface deformations in the hexatic order
presents an exponential relaxation dynamics in contrast to
the power-law relaxation dynamics observed in homoge-
neous films. Also, it was shown that the surface coupling
plays an important role in the transmission of surface defor-
mations into the inner layers. It is important to recall that an
optic mode with a finite relaxation time in the regime of
small wave vectors has been previously observed in bulk
tilted smectic liquid-crystal films [30-32]. Here we have
shown that a surface tilt is enough to induce the emergence
of such mode in the diffusive case. In the viscous case, it was
shown that the longer relaxation time always diverges in the
regime of small wave vectors. In this case, surface effects do
not modify qualitatively the relaxation dynamics of surface
deformations in the hexatic order. However, the temporal
evolution of inner layers deformations was observed to de-
pend on the boundary conditions. In fact, it was observed
that the asymptotic behavior 6,(r) «<¢~! in homogeneous films
is replaced by 6,(¢)>¢~? in films with a surface tilted order.
Moreover, it was observed an oscillatory-exponential relax-
ation in a finite range of wave vectors. This result shall be
contrasted with that exhibited by smectic-A films for which
underdamped oscillations may be observed down to very low
wave vectors [18]. For typical liquid crystals, we expect »
~(0.1 GHz and 7,~ 100 ns which may be measured by the
recently developed technique of photon correlation spectros-
copy in the nanosecond scale [19].
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